4.4 Notes and Examples

Problem:
Find and identify all of the intervals where the following function is increasing, decreasing, or constant.

Click here to see graph.

Answer:
Select the best answer from the options below. Once the choice is made, use the boxes provided to enter each interval, using interval notation.

- Increasing
- Decreasing
- Constant
- Increasing and Decreasing
- Increasing over two intervals
- Decreasing over two intervals

Looking at domain:
Decreasing from $(-\infty, 4)$
Increasing from $(4, \infty)$

Function:
Consider the following function.

$$f(x) = [x - 4]$$

Solution:
Identify the more basic function that has been shifted, reflected, stretched, or compressed.

Answer: $f(x) = [x]$ use keypad for symbols

Basic functions are the same as parent functions. Ignore any numbers (except for exponents).

Function:
Consider the following function.

$$s(x) = [x - 4]$$

Solution:
Indicate the shape of the function that was found in step 1.

- [] is a step function, so only one graph shows “steps”

Correct: []
You were asked to determine if the following equation has x-axis symmetry, y-axis symmetry, origin symmetry, or none of these.

\[2x + y^2 = 2 \]

By definition, an equation in \(x \) and \(y \) is symmetric with respect to:
1. The y-axis if replacing \(x \) with \(-x \) results in an equivalent equation.
2. The x-axis if replacing \(y \) with \(-y \) results in an equivalent equation.
3. The origin if replacing \(x \) with \(-x \) and \(y \) with \(-y \) results in an equivalent equation.

Replacing \(x \) with \(-x \), in this equation, results in the following:
\[2(\ -x\) + y^2 = 2 \Rightarrow -2x + y^2 = 2 \]

Replacing \(y \) with \(-y \), in this equation, results in the following:
\[2x + (-y)^2 = 2 \Rightarrow 2x + y^2 = 2 \]

Replacing \(x \) with \(-x \) and \(y \) with \(-y \), in this equation, results in the following:
\[2(\ -x\) + (\ -y\)^2 = 2 \Rightarrow -2x + y^2 = 2 \]

It should be clear, at this point, that replacing \(y \) with \(-y \) results in an equivalent equation. Therefore, this equation has x-axis symmetry.

Correct Answer: x-Axis Symmetry

You were asked to determine if the following function is even, odd, or neither.

\[s(x) = \frac{|x|}{3} - 2 \]

FUNCTION

Determine if the following function is even, odd, or neither.

SOLUTION

- Even
- Odd
- Neither

Correct Answer: Even

Absolute value graphs with positive coefficients open upward

The vertex is at \((-4, 0)\).

The function is decreasing from \((-\infty, -4)\), then increasing from \((-4, \infty)\)
Consider the following function.

\[f(x) = -\frac{\sqrt{-x}}{2} \]

Solution

Identify the more basic function that has been shifted, reflected, stretched, or compressed.

Answer: \(f(x) = \sqrt{x} \)

Consider the following function.

\[g(x) = (x + 2)^3 \]

Solution

Identify the shape of the function that was found in step 1.

We need the graph for \(x^3 \).
Shift a graph 4 units right, not left.

- Stretch or Compress: A stretch occurs when a function is multiplied by a number $|a| > 1$. A compress occurs when functions are divided by a number or multiply by a fraction < 1.

 - Stretch $3x^2$ or $-2x^3$
 - Compress $\frac{1}{3}x^2$ or $\frac{x^3}{2}$

- x-reflection: the basic function is multiplied by a negative $f(x) = -\frac{x^2}{2}$

- y-reflection: the $f(x)$ is multiplied by -1. I have never seen one here, but who knows. $f(x) = -x^3$

- Vertical shift: a number added or subtracted to the basic function. No opposite here. $x^2 + 4$ has a vertical shift of 4 units.
Lesson 4.4 - Transformations of Functions
Practice: Question 11 of 20, Step 2 of 2

Consider the following function.
\[f(x) = \frac{1}{(x+2)^2} + 5 \]

SOLUTION

Select the best answer from the options below. Once the choice is made, use the box(es) provided to enter each interval, using interval notation.

- Increasing
- Decreasing
- Constant

○ Increasing and Decreasing
○ Increasing over two intervals
○ Decreasing over two intervals

Domain of All real numbers \(\mathbb{R} \) from keypad